Skip to content

🧠 MiniMax‑M1: Lightning‑Fast Open Source faster than CHAT GPT

⚙️ Introduction to MiniMax‑M1

MiniMax‑M1 is a groundbreaking open‑weight large‑scale reasoning model featuring a hybrid Mixture‑of‑Experts (MoE) architecture paired with ultra‑efficient lightning attention. Evolving from MiniMax‑Text‑01 (456 B params), M1 activates 45.9 B params per token and natively handles 1 million‑token context windows—8× larger than DeepSeek R1. Its lightning attention achieves 75% FLOP savings at 100k-generation length compared to DeepSeek R1.

Trained with a large‑scale reinforcement learning (RL) framework across mathematics, software engineering, and sandbox environments, M1 introduces CISPO, a novel RL algorithm that clips importance‑sampling weights for superior stability. Two model variants support 40k and 80k token “thinking budgets.” On complex reasoning, coding, and long‑context benchmarks, MiniMax‑M1 surpasses DeepSeek‑R1 and Qwen3‑235B, establishing a powerful new foundation for reasoning AI agents.

MiniMax

🧠 MiniMax‑M1 Overview try from here

MiniMax‑M1 is the world’s first open-weight, large-scale hybrid-attention reasoning model, featuring:

  • A hybrid Mixture-of-Experts (MoE) architecture:
    • Total size: 456 billion parameters
    • Active per token: 45.9 billion
    • Sparse expert selection via top‑k gating
  • Support for 1 million token context windows—8Ă— larger than DeepSeek R1
  • Lightning attention mechanism:
    • Combines sparse (lightning) blocks with occasional softmax blocks
    • Enables linear-time attention with build-in scalability
    • Consumes only 25% of FLOPs vs. DeepSeek R1 at 100K tokens

🚀 RL Training with CISPO

  • Trained via large-scale reinforcement learning across domains like math, software engineering, and sandbox environments
  • Introduces CISPO (Clipped Importance Sampling Policy Optimization):
    • Clips importance-sampling weights (not gradients)
    • Boosts training stability and efficiency
    • Enables RL training in just 3 weeks on 512 H800 GPUs for ~$535K

🔬 Model Variants & Strengths

  • Comes in two versions:
    • MiniMax‑M1‑40K – standard reasoning
    • MiniMax‑M1‑80K – extended “thinking budget”
  • Outperforms DeepSeek‑R1 and Qwen3‑235B on benchmarks involving:
    • Long-context reasoning
    • Code and software engineering tasks
    • Tool use

⚖️ Why It Matters

MiniMax‑M1 uniquely combines scale, efficiency, and openness:

  • Only 45.9B active parameters per token, enabling computation-light inference
  • Lightning attention + MoE achieves linear scaling in attention operations
  • 1 million token context supports deep reasoning across entire books, large codebases, or long conversations
  • Full transparency under Apache 2.0, empowering researchers and developers

đź§© Architecture Diagram

A visual overview of MiniMax‑M1’s hybrid MoE + Lightning Attention architecture, illustrating how sparse MoE blocks and efficient attention layers interoperate.()

📊 Benchmark Table

TaskMiniMax‑M1‑80KMiniMax‑M1‑40KDeepSeek‑R1Qwen3‑235B
AIME 2024 (Math)86.0 %83.3 %79.8 %85.7 %
LiveCodeBench (Coding)65.0 %62.3 %55.9 %65.9 %
SWE‑bench Verified (SW Eng.)56.0 %55.6 %49.2 %34.4 %
TAU‑bench (Tool Use)62.0 %60.0 %53.5 %34.7 %
OpenAI‑MRCR (128k Context)73.4 %76.1 %51.5 %27.7 %
OpenAI‑MRCR (1M Context)56.2 %58.6 %N/AN/A

⚙️ Integration Examples

  • GitHub Repository:
    Official code, model weights, and tech report under Apache‑2.0 license. Come explore modeling_minimax_m1.py, inference scripts, and integration examples.
  • Hugging Face Model Hub:
    Includes both 40K and 80K variants, with deployment options via Transformers, vLLM, and API access. Installation examples: pythonCopyEditpip install transformers vllm from transformers import pipeline pipeline('text-generation', model='MiniMax-AI/MiniMax-M1-80k') ```([turn0search2](#cited))
  • Production Deployment:
    Supports vLLM for optimized, high-throughput serving; recommended for latency-sensitive applications.

đź’ˇ Visual Insights

  • Benchmark bar charts show MiniMax‑M1‑80K consistently outperforms leading open-weight counterparts across mathematics, software engineering, reasoning, tool use, and long-context tasks—even rivaling some closed-weight models
  • FLOPs vs. sequence length graph indicates ~25% compute cost compared to DeepSeek‑R1 at 100K tokens, reflecting lightning attention efficiency.

🖥️ Minimum Hardware & Software Specifications

âś… Hardware Requirements

ComponentMinimumRecommended
GPUNVIDIA RTX 4090 / A6000 (24 GB VRAM) minimax01.com+15atalupadhyay.wordpress.com+15onedollarvps.com+158× NVIDIA H800 / H20 GPUs (~350 GB VRAM)
System RAM64 GB—
Storage1 TB SSD—
CPU8+ cores—
NetworkHigh-speed internet—

⚙️ Software Requirements

  • OS: Linux (Ubuntu 20.04+) or macOS; Docker support for Windows environments
  • Python: 3.10+
  • CUDA: 11.8+; for vLLM usage CUDA versions supported accordingly
  • Libraries: PyTorch ≥2.0.0, transformers, accelerate, vllm, datasets, numpy, pandas, matplotlib, seaborn, tqdm
  • Optional: wandb, gradio, langchain, sentence-transformers, faiss-cpu

🚀 Installation Guide

Step 1: Clone & Setup Environment

conda create -n minimax-m1 python=3.10
conda activate minimax-m1

git clone https://github.com/MiniMax-AI/MiniMax-M1
cd MiniMax-M1

Step 2: Install Dependencies

pip install torch>=2.0.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install transformers>=4.36 accelerate>=0.24 vllm>=0.2 datasets>=2.14 numpy>=1.24 pandas>=2.0 matplotlib>=3.7 seaborn>=0.12 tqdm>=4.65
# optional tools:
pip install wandb gradio langchain sentence-transformers faiss-cpu

atalupadhyay.wordpress.com

Step 3: Download Model Weights

pip install -U huggingface-hub
huggingface-cli download MiniMaxAI/MiniMax-M1-40k
# or MiniMax-M1-80k

Ensure git lfs is installed to fetch full weight files .

Step 4: Deploy with vLLM (Recommended)

Docker Deployment:

docker pull vllm/vllm-openai:v0.8.3
docker run -it \
-v $MODEL_DIR:$MODEL_DIR \
-v $CODE_DIR:$CODE_DIR \
--network=host --privileged --ipc=host --shm-size=2g \
--gpus all \
vllm/vllm-openai:v0.8.3 /bin/bash

Inside container:

export SAFETENSORS_FAST_GPU=1
export VLLM_USE_V1=0
python3 -m vllm.entrypoints.openai.api_server \
--model $MODEL_DIR \
--tensor-parallel-size 8 \
--trust-remote-code \
--quantization experts_int8 \
--max_model_len 4096

Direct vLLM Install:

pip install vllm

📡 Integration & Usage

🔹 Hugging Face Transformers Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("MiniMaxAI/MiniMax-M1-80k", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True)

🔹 vLLM API Usage

curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"model":"MiniMaxAI/MiniMax-M1-80k", "messages":[{"role":"user","content":[{"type":"text","text":"Your prompt here"}]}]}'

📌 Summary

  • Hardware: 24 GB GPU VRAM minimum; 8Ă— H800/H20 GPUs for full performance
  • Software: Python 3.10+, PyTorch, CUDA 11.8+, vLLM, Transformers
  • Deployment: vLLM via Docker (recommended) or direct install; Transformers support for experimentation
  • Model Access: Download weights from Hugging Face with git lfs

🛠️ Quantization & Low-Resource Setups

To deploy MiniMax‑M1 efficiently on constrained hardware, consider:

đź”® Future Work

MiniMax‑M1 sets the stage for further advancements:

âś… Conclusion

MiniMax‑M1 stands as a landmark in open-weight reasoning models, delivering:

Moving forward, advancements in quantization, modular deployment, and extended multimodal capabilities will further strengthen MiniMax’s position as a foundational model for the next AI generation.

📚 References

  1. MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention, arXiv, June 2025 labellerr.com+8arxiv.org+8en.wikipedia.org+8
  2. MiniMax‑01: Scaling Foundation Models with Lightning Attention, arXiv, Jan 2025 arxiv.org+15arxiv.org+15arxiv.org+15
  3. Low-bit Quantization of Neural Networks for Efficient Inference, arXiv, Feb 2019 reddit.com+4arxiv.org+4blog.openvino.ai+4
  4. QuantoConfig & Transformers Quantization Guide, GitHub github.com
  5. Reddit on Quantization Levels & Tips, insights on INT4/INT8 tradeoffs reddit.com+3reddit.com+3reddit.com+3
  6. SageAttention2 / AMXFP4 for FP4 LLM Inference, OpenVINO Blog, Q1 2023 blog.openvino.ai

Leave a Reply

Your email address will not be published. Required fields are marked *